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A Little History

• Most parallel programs are written using explicit
parallelism, either:

• Message passing with a SPMD model
• Usually for scientific applications with C++/Fortran
• Scales easily

• Shared memory with a thread C or Java
• Usually for non-scientific applications
• Easier to program

• Take the best features of both for Titanium
• Builds on ideas in Split-C, AC, and UPC
• Safer language and more sophisticated implementation



Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Titanium
• Take the best features of threads and MPI

• global address space like threads (programming)
• SPMD parallelism like MPI (performance)
• local/global distinction, i.e., layout matters (performance)

• Based on Java, a cleaner C++
• classes, automatic memory management
• compiled to C and then assembly (no JVM)

• Optimizing compiler
• communication and memory optimizations
• synchronization analysis
• cache and other uniprocessor optimizations
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Summary of Features Added to Java
• Scalable parallelism:

• SPMD model of execution with global address space
• Multidimensional arrays with iterators
• Checked Synchronization
• Immutable classes

• user-definable non-reference types for performance
• Operator overloading
• Zone-based memory management
• Libraries

• Global communication
• Distributed arrays
• Fast bulk I/O
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Lecture Outline

• Language and compiler support for
uniprocessor performance
• Immutable classes
• Multidimensional Arrays
• foreach

• Language support for parallel computation
• Applications and application-level libraries
• Summary and future directions
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Java: A Cleaner C++
• Java is an object-oriented language

• classes (no standalone functions) with methods
• inheritance between classes

• Documentation on web at java.sun.com
• Syntax similar to C++

class Hello {
   public static void main (String [] argv) {
           System.out.println(“Hello, world!”);
   }
}

• Safe: strongly typed, auto memory management
• Titanium is (almost) strict superset
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Java Objects
• Primitive scalar types: boolean, double, int, etc.

• implementations will store these on the program stack
• access is fast -- comparable to other languages

• Objects: user-defined and standard library
• passed by pointer value (object sharing) into functions
• has level of indirection (pointer to) implicit
• simple model, but inefficient for small objects
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Java Object Example
class Complex {
  private double real;
  private double imag;
  public Complex(double r, double i) {
       real = r; imag = i; }
  public Complex operator+(Complex c) {
       return new Complex(c.real + real,
                          c.imag + imag); }
  public double getReal {return real; }
  public double getImag {return imag; }
}
Complex c = new Complex(7.1, 4.3);
c = c + c;
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Immutable Classes in Titanium

• For small objects, would sometimes prefer
• to avoid level of indirection
• pass by value (copying of entire object)
• especially when immutable -- fields never modified

• extends the idea of primitive values to user-defined values

• Titanium introduces immutable classes
• all fields are final (implicitly)
• cannot inherit from or be inherited by other classes
• needs to have 0-argument constructor
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Example of Immutable Classes

• The immutable complex class nearly the same
      immutable class Complex {
           Complex () {real=0; imag=0; }
           ..…
        }

• Use of immutable complex values
     Complex c1 = new Complex(7.1, 4.3);
    Complex c2 = new Complex(2.5, 9.0);
    c1 = c1 + c2;

Similar to structs in C in terms of performance

Zero-argument
constructor required

new keyword

Rest unchanged.  No assignment to
fields outside of constructors.
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Arrays in Java

• Arrays in Java are objects
• Only 1D arrays are directly supported
• Array bounds are checked

• Safe but potentially slow

• Multidimensional arrays
as arrays-of-arrays
• General, but slow
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Multidimensional Arrays in Titanium

• New kind of multidimensional array added
• Subarrays are supported (unlike Java arrays)
• Indexed by Points (tuple of ints)
• Constructed over a set of Points, called Domains
• RectDomains (rectangular domains) are a special case
• Points, Domains, RectDomains are immutable classes

•  Support for adaptive meshes and other
mesh/grid operations
• e.g., can refer to the boundary region of an array
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Point, RectDomain, Arrays in General
• Points specified by a tuple of ints

• RectDomains given by 3 points:
• lower bound, upper bound (and stride)

• Array declared by # dimensions and type

• Array created by passing RectDomain

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];
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Simple Array Example
• Matrix sum in Titanium

Point<2> lb = [1,1];

Point<2> ub = [10,20];

RectDomain<2> r = [lb,ub];

double [2d] a = new double [r];

double [2d] b = new double [1:10,1:20];

double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)

   for (int j = 1; j <= 20; j++)

     c[i,j] = a[i,j] + b[i,j];

No array allocation here

Syntactic sugar

Optional stride
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Naïve MatMul with Titanium Arrays

public static void matMul(double [2d] a,
    double [2d] b, double [2d] c) {
  int n = c.domain().max()[1]; // square
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        for (int k = 0; k < n; k++) {
           c[i,j] += a[i,k] * b[k,j];
         }
      }
   }
}
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Array Performance Issues
• Array representation is fast, but access methods

can be slow, e.g., bounds checking, strides
• Compiler optimizes these

• common subexpression elimination
• eliminate (or hoist) bounds checking
• strength reduce: e.g., naïve code has 1 divide per

dimension for each array access

• Currently +/- 20% of C/Fortran for large loops
• Future: small loop and cache optimizations
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Unordered iteration

• All of these optimizations require loop analysis
• Compilers can do this for simple operations,

e.g., matrix multiply, but hard in general
• Titanium adds unordered iteration on

rectangular domains -- gives user more control
     foreach (p within r) { ... }

• p is a Point new point within the foreach body
• r is a previously-declared  RectDomain
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Laplacian Example

• Simple example of using arrays and foreach

 Domain<2> interior = A.domain().shrink(1);
 Point<2> dx = [1,0];
 Point<2> dy = [0,1];
 foreach (p in interior) {
   L[p] = 4*a[p] - a[p+dx] - a[p-dx]
                 - a[p+dy] - a[p-dy];
 }
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Better MatMul with Titanium Arrays

public static void matMul(double [2d] a,
       double [2d] b, double [2d] c) {
  foreach (ij within c.domain()) {
    double [1d] aRowi = a.slice(1, ij[1]);
    double [1d] bColj = b.slice(2, ij[2]);
    foreach (k within aRowi.domain()) {
      c[ij] += aRowi[k] * bColj[k];
    }
  }
}
Current performance: comparable to 3 nested loops in C
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Sequential Performance
C/C++/
FORTRAN

Java
Arrays

Titanium
Arrays Overhead

DAXPY
3D multigrid
2D multigrid
MatMul

1.4s
12s

5.4s
1.8s 2.2s 22%

15%
83%
7%

6.2s
22s

1.5s6.8s

Ultrasparc:

C/C++/
FORTRAN

Java
Arrays

Titanium
Arrays Overhead

DAXPY
3D multigrid
2D multigrid

1.8s
23.0s
7.3s -25%

-13%
27%

5.5s
20.0s
2.3s

Pentium II:

Compares to naïve C code; neither compiler does
cache blocking (yet).
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Lecture Outline
• Language and compiler support for

uniprocessor performance
• Language support for parallel computation

• SPMD execution
• Barriers and single
• Explicit Communication
• Implicit Communication (global and local references)
• More on Single
• Synchronized methods and blocks (as in Java)

• Applications and application-level libraries
• Summary and future directions
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SPMD Execution Model
• Java programs can be run as Titanium, but the

result will be that all processors do all the work
• E.g., parallel hello world
      class HelloWorld {
          public static void main (String [] argv) {

            System.out.println(‘’Hello from proc ‘’ +

                               Ti.thisProc());

            }

         }

• Any non-trivial program will have
communication and synchronization
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SPMD Execution Model

• A common style is compute/communicate

• E.g., in each timestep within particle simulation
with gravitation attraction

      read all particles and compute forces on mine

      Ti.barrier();

      write to my particles using new forces

      Ti.barrier();
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SPMD Model

• All processor start together and execute same
code, but not in lock-step

• Basic control done using
• Ti.numProcs() total number of processors
• Ti.thisProc() number of executing processor

• Sometimes they take different branches
        if (Ti.thisProc() == 0) { ….. do setup ..… }
    System.out.println(‘’Hello from ‘’ + Ti.thisProc());

    double [1d] a = new double [Ti.numProcs()];
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Barriers and Single
• Common source of bugs is barriers or other

global operations inside branches or loops
 barrier, broadcast, reduction, exchange

• A “single” method is one called by all procs
 public single static void allStep(..…)

• A “single” variable has same value on all procs
 int single timestep = 0;

• Single annotation on methods (also called
“sglobal”) is optional, but useful to
understanding compiler messages.
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Explicit Communication: Broadcast

• Broadcast is a one-to-all communication
               broadcast <value> from <processor>
• For example:
        int count = 0;

        int allCount = 0;

        if (Ti.thisProc() == 0) count = computeCount();

        allCount = broadcast count from 0;

• The processor number in the broadcast must be
single; all constants are single.

• The allCount variable could be declared single.
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Example of Data Input

• Same example, but reading from keyboard
• Shows use of Java exceptions
   int single count = 0;

   int allCount = 0;

   if (Ti.thisProc() == 0)

     try {

        DataInputStream kb = new DataInputStream(System.in);

        myCount = Integer.valueOf(kb.readLine()).intValue();

     } catch (Exception e) {

       System.err.println(``Illegal Input’’);

   allCount = myCount from 0;
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Explicit Communication: Exchange

• To create shared data structures
• each processor builds its own piece
• pieces are exchanged (for object, just exchange pointers)

• Exchange primitive in Titanium
    int [1d] single allData;

    allData = new int [0:Ti.numProcs()-1];

    allData.exchange(Ti.thisProc()*2);

• E.g., on 4 procs, each will have copy of allData:

0 2 4 6
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Exchange on Objects
• More interesting example:
•   class Boxed {
•      public Boxed (int j) {

•        val = j;

•      }

•      public in val;

•   }

• Object [1d] single allData;

• allData = new Object [0:Ti.numProcs()-1];

• allData.exchange(new Boxed(Ti.thisProc());

allData

P0P0 P1

allData allData

val:  0 val:  1 val:  2

P2
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Distributed Data Structures
• Build distributed data structures with arrays:

    RectDomain <1> single allProcs = [0:Ti.numProcs-1];

    RectDomain <1> myParticleDomain = [0:myPartCount-1];

    Particle [1d] single [1d] allParticle =

                       new Particle [allProcs][1d];

    Particle [1d] myParticle =

                       new Particle [myParticleDomain];

    allParticle.exchange(myParticle);

• Now each processor has array of pointers,
one to each processor’s chunk of particles
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More on Single

• Global synchronization needs to be controlled
• if (this processor owns some data) {
•     compute on it
•     barrier
• }

• Hence the use of “single” variables in Titanium
• If a conditional or loop block contains a barrier,

all processors must execute it
• conditions in such loops, if statements, etc. must contain

only single variables



Katherine Yelick, Computer Science Division, EECS, University of California, Berkeley

Titanium

Single Variable Example

• Barriers and single in N-body Simulation
    class ParticleSim {
       public static void main (String [] argv) {
       int single allTimestep = 0;
       int single allEndTime = 100;
       for (; allTimestep < allEndTime; allTimestep++){
          read all particles and compute forces on mine
          Ti.barrier();
          write to my particles using new forces
          Ti.barrier();
        }
      }
    }

• Single methods inferred; see David Gay’s work
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Use of Global / Local

• As seen, references (pointers) may be remote
• easy to port shared-memory programs

• Global pointers are more expensive than local
• True even when data is on the same processor
• Use local declarations in critical sections

• Costs of global:
• space (processor number + memory address)
• dereference time (check to see if local)

• May declare references as local
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Global Address Space

• Processes allocate locally
• References can be passed

to other processes
Class C { int val;.. }
C gv;       // global pointer
C local lv; // local pointer

if (thisProc() == 0) {
lv = new C();

}
gv = broadcast lv from 0;
gv.val = ..; // full
.. = gv.val; // functionality

Process 0
Other

processes

lv

gv

lv

gv

lv

gv

lv

gv

lv

gv

lv

gv

LOCAL
HEAP

LOCAL
HEAP
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Local Pointer Analysis
• Compiler can infer many uses of local

• See Liblit’s work on Local Qualification Inference

• Data structures must be well partitioned

Effect of LQI
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Region-Based Memory Management
PrivateRegion r = new PrivateRegion();

For (int j = 0; j < 10; j++) {

   int[] x = new ( r ) int[j + 1];

   work(j, x);

}

try { r.delete; }

catch (RegionInUse oops) {

    system.out.println(“failed to delete”);

  }

}
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Lecture Outline

• Language and compiler support for
uniprocessor performance

• Language support for parallel computation
• Applications and application-level libraries

• AMR overview
• AMR and uniform grid algorithms in Titanium
• Several smaller benchmarks

• MatMul, LU, FFT, Join, Sort, EM3d

• Library interfaces
• PETSc, Metis,

• Summary and future directions
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Block-Structured AMR
• Algorithms for many rectangular, grid-based

computations are
• communication intensive
• memory intensive

• AMR makes these harder
• more small messages
• more complex data structures
• most of the programming effort

is debugging the boundary cases
• locality and load balance trade-off is hard
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Algorithms for AMR
• Existing algorithms in Titanium

• 3D AMR Poisson solver
• 3D AMR Gas dynamics
• Domain-decomposition MLC Poisson

• Under development
• Self-gravitating gas dynamics (3D AMR)

• For stellar collapse, etc.

• Immersed boundary method (3D, non-adaptive)
• Peskin and MacQueen’s method for heart model, etc.

• Embedded boundaries
• Simulation of bio-MEMs devices and cellular level modeling

• Project Idea:
• Multiblock Java code with self-scheduling.   Contact me, yelick@cs.
• Evaluation of and proposal for general domains.

• All joint with Colella’s group at LBNL
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3D AMR Gas Dynamics

• Hyperbolic Solver [McCorquodale and Colella]
• Implementation of Berger-Colella algorithm
• Mesh generation algorithm included

• 2D Example (3D supported)
• Mach-10 shock on solid surface

at oblique angle

• Future: Self-gravitating gas dynamics package
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3D AMR Poisson
• Poisson Solver [Semenzato, Pike, Colella]

• finite domain
• variable

coefficients
• multigrid

across levels

• Currently synthetic grids, no grid generation
• Under construction

• reengineered to interface with hyperbolic solver
• including mesh generation

Level 0

Level 2

Level 1
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MLC for Finite-Differences

• Poisson solver with infinite domains [Colella, Balls]
• Uses a Method of Local Corrections (MLC)
• Currently non-adaptive and 2D
• Supports only constant coefficients

• Uses 2-level, domain decomposition approach
• Fine-grid solutions are computed in parallel
• Information transferred to a coarse-grid and solved serially
• Fine-grid solutions is computed using boundary conditions from the

coarse grid

• Future work includes 3D Adaptive version
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MLC for Finite-Differences

• Features of the method
• Solution is still second-order accurate
• Accuracy depends only weakly on the coarse-grid spacing

• Scalability
• No communication during fine-grid solves
• Single communication step (global all-to-all)
• coarse grid work is serial (replicated), but relatively small

• Future work: extend to 3D and adaptive meshes
• Project idea: extension to 3D: see Greg Balls, gballs@cs
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Error on High-Wavenumber Problem
• Charge is

• 1 charge of
concentric waves

• 2 star-shaped
charges.

• Largest error is
where the charge
is changing
rapidly. Note:
• discretization error
• faint

decomposition
error

• Run on 16 procs
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Scalable Poisson Solver (MLC)

• Communication performance is low (< 5%)
• Scaled speedup experiments are nearly ideal

(flat)

        IBM SP2 at SDSC          Cray t3e at NERSC
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Unstructured Mesh Kernel

• EM3D: Relaxation on a
3D unstructured mesh

• Speedup on Ultrasparc
SMP

• Simple kernel: mesh not
partitioned.

0
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em3d
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Calling Other Languages

• We have built interfaces to
• PETSc : scientific library for finite element applications
• Metis: graph partitioning library

• Two issues with cross-language calls
• accessing Titanium data structures (arrays) from C

• possible because Titanium arrays have same format on inside

• having a common message layer
• Titanium is built on lightweight communication
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Lecture Outline

• Language and compiler support for
uniprocessor performance

• Language support for parallel computation
• Applications and application-level libraries
• Summary and future directions

• Implementation
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Implementation
• Strategy

• Titanium into C
• Solaris or Posix threads for SMPs
• Lightweight communication for MPPs/Clusters

• Status: Titanium runs on
• Solaris or Linux SMPs and uniprocessors
• Berkeley NOW
• SDSC Tera, SP2, T3E (NERSC and NPACI)
• SP3 (and IBM SP Power3) port underway
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Titanium Summary
• Performance

• close to C/FORTRAN + MPI on limited class of problems

• Portability
• develop on uniprocessor, then SMP, then MPP/Cluster

• Safety
• as safe as Java, extended to parallel framework

• Expressiveness
• easier than MPI, harder than threads

• Compatibility, interoperability, etc.
• no gratuitous departures from Java standard
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Using Titanium
• On machines in the CS Division

    /srs/titanium/*/bin/tcbuild file.ti
• Solaris 2.6 and Linux supported; need to mount this filesystem

• On NERSC t3e use:
         /u/mp215/miyamoto/tc-1.44/tcbuild/tcbuild file.ti

• On SP2 contact: cjlin@cs.berkeley.edu
• For documentation, source code, see the home page

• http://www.cs.berkeley.edu/projects/titanium

• Documentation includes
• Language reference, terse but complete
• Tutorial, incomplete

• For problems or questions:
    titanium-group@cs.berkeley.edu
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Future Plans

• Improved compiler optimizations for scalar code
• large loops are currently +/- 20% of Fortran
• working on small loop performance

• Packaged solvers written in Titanium
• Elliptic and hyperbolic solvers, both regular and adaptive

• New application collaboration
• Peskin and McQueen (NYU) with Colella (LBNL)
• Immersed boundary method, currently use for heart

simulation, platelet coagulation, and others
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Backup Slides
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Other Language Extensions

Java extensions for expressiveness &
performance

• Operator overloading
• Zone-based memory management
• Foreign function interface

The following is not yet implemented in the
compiler

• Parameterized types (aka templates)
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Consistency Model

• Titanium adopts the Java memory consistency
model

• Roughly: Access to shared variables that are not
synchronized have undefined behavior.

• Use synchronization to control access to shared
variables.
• barriers
• synchronized methods and blocks


